Optimizing Weights in Elman Recurrent Neural Networks with Wolf Search Algorithm
نویسندگان
چکیده
This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; therefore, it is not devoid of local minima and slow convergence problem. This paper used a new metaheuristic search algorithm, called wolf search (WS) based on wolf’s predatory behavior to train the weights in ERNN to achieve faster convergence and to avoid the local minima. The performance of the proposed Metahybrid Wolf Search Elman Recurrent Neural Network (WRNN) is compared with Bat with back propagation (Bat-BP) algorithm and other hybrid variants on benchmark classification datasets. The simulation results show that the proposed Metahybrid WRNN algorithm has better performance in terms of CPU time, accuracy and MSE than the other algorithms.
منابع مشابه
Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملWeight Optimization in Recurrent Neural Networks with Hybrid Metaheuristic Cuckoo Search Techniques for Data Classification
Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum of the error function since gradient descent may get stuck in local minima. As a solution, nature...
متن کاملTraining Elman Neural Network for Dynamic System Identification Using an Adaptive Local Search Algorithm
Recurrent neural networks, especially for Elman Neural Network, have attracted the attention of researchers in the fields of Dynamic System Identification (DSI) since they took the memory unit through the context delay. In this paper, we propose an Adaptive Local Search (ALS) algorithm to train Elman Neural Network (ENN) for Dynamic Systems Identification (DSI) from a new angle instead of tradi...
متن کامل